These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic]. Author: Qin GS, Qin WP, Chen BJ, E SL, Ge ZJ, Ren XG, Huang SH. Journal: Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Oct; 22(5):705-8. PubMed ID: 12938407. Abstract: In this paper, high efficiency and low threshold upconversion from IR to red is reported, for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic under 978 nm LD excitation. The component of sample in experiment is 65GeO2-25NaF-8.5BaF2-1Er2O3-0.5 Tm2O3, and the prepared method is obtained. The upconversion emission spectra under 978 nm LD excitation is measured at room temperature. Analyzing it, we find that introduction of Tm3+ into Er3+ doped system preferentially quenches the green upconversion fluorescence from 4S3/2 level of Er3+ duo to the efficient cross-relaxation of 4I13/2-->4I15/2 (Er): 3H6-->3H4 (Tm) which can significantly reduce the upconversion efficiency from 4I13/2 level to the emitting 4S3/2 level, and the Tm3+ behaves as a good sensitizer of the red upconversion from the 4F9/2 level of Er3+ which is mainly populated by the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er). However, at low Er3+ concentration (2 mol%), it is impossible for strong red upconversion. X-ray analysis is done, there are lots of nanocrystallites in MFG glass-ceramic. So we think, this red upconversion is attributed to Er3+ enriched fluoride microcrystallites, which makes the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er) more effective, therefore their active optical properties may be optimised. In the end, the relationship between LD working current and intensity of upconversion luminescence is discussed, the results confirm that both red and green upconversion processes are consisted by two photons.[Abstract] [Full Text] [Related] [New Search]