These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stability in aqueous solution of two monocyclic beta-lactam antibiotics: aztreonam and nocardicin A. Author: Méndez R, Alemany T, Martín-Villacorta J. Journal: Chem Pharm Bull (Tokyo); 1992 Dec; 40(12):3222-7. PubMed ID: 1294324. Abstract: The catalytic effect of various buffer systems (citrates, acetates, phosphates, borates and carbonates) on the degradation of aztreonam and nocardicin A in aqueous solution was studied at 35 degrees C and a constant ionic strength of 0.5 mol.dm-3 over a pH range of 3.50 to 10.50. The observed degradation rates, obtained by measuring the remaining intact antibiotic, were shown to follow pseudo-first-order kinetics with regard to antibiotic concentrations and to be influenced by general acid and general base catalysis. The changes in the concentration of intact beta-lactam antibiotic in the solutions were established by reverse-phase HPLC with UV-detection. In general the buffer systems employed in the kinetic studies showed a very weak catalytic effect on the degradation of aztreonam and nocardicin A. The pH-rate profiles for these antibiotics showed degradation minimums at pH 5.38 and 6.13, respectively. Aztreonam is slightly more reactive with hydrogen ions than nocardicin A and is much more reactive with hydroxide ions. In comparison with other beta-lactamic antibiotics, aztreonam and nocardicin A are much more stable in aqueous solution, except for aztreonam in a base solution, which is just as unstable as penicillins and cephalosporins. The Arrhenius activation energies were determined for aztreonam and nocardicin A at pH's 4.23, 6.59 and 8.60.[Abstract] [Full Text] [Related] [New Search]