These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inactivation and reactivation of horseradish peroxidase immobilized by various procedures. Author: Husain S, Husain Q, Saleemuddin M. Journal: Indian J Biochem Biophys; 1992 Dec; 29(6):482-6. PubMed ID: 1294465. Abstract: Horseradish peroxidase (HRP) immobilized by coupling the amino acid side chain amino groups or carbohydrate spikes to the matrix has been studied for its resistance to heat, urea-induced inactivation and ability to regain activity after denaturation in order to understand the influence of the nature of immobilization procedure on these processes. The various immobilized preparations were obtained and their properties studied: Sp-HRP was obtained by direct coupling of HRP to cyanogen bromide-activated Sepharose, Sp-NHHRP by coupling periodate oxidized and diamine-treated enzyme to the cyanogen bromide activated Sepharose, SpNH-COHRP by coupling periodate-treated enzyme to amino-Sepharose and SpCon A-HRP by binding of the enzyme on Con A-Sepharose. All the immobilized preparations exhibited higher stability against heat-induced inactivation as compared to the native HRP. Sp-NHHRP was most stable followed by Sp-HRP, SpNH-COHRP and SpCon A-HRP. Sp-NHHRP was also superior in its ability to regain enzyme activity after thermal denaturation, although Sp-HRP regained maximum activity after urea denaturation. Inclusion of Ca2+ was essential for the reactivation of all preparations subsequent to denaturation by urea.[Abstract] [Full Text] [Related] [New Search]