These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. Author: Davis CD, Uthus EO. Journal: J Nutr; 2003 Sep; 133(9):2907-14. PubMed ID: 12949386. Abstract: Several observations suggest a role for DNA methylation in cancer pathogenesis. Although both selenium and folate deficiency have been shown to cause global DNA hypomethylation and increased cancer susceptibility, the nutrients have different effects on one-carbon metabolism. Thus, the purpose of this study was to investigate the interactive effects of dietary selenium and folate. Weanling, Fischer-344 rats (n = 23/diet) were fed diets containing 0 or 2.0 mg selenium (as selenite)/kg and 0 or 2.0 mg folate/kg in a 2 x 2 factorial design. After 3 and 4 wk of a 12-wk experiment, 19 rats/diet were injected intraperitoneally with dimethylhydrazine (DMH, 25 mg/kg) and 4 rats/diet were administered saline. Selenium deficiency decreased (P < 0.05) colonic DNA methylation and the activities of liver DNA methyltransferase and betaine homocysteine methyltransferase and increased plasma glutathione concentrations. Folate deficiency increased (P < 0.05) the number of aberrant crypts per aberrant crypt foci, the concentration of colonic S-adenosylhomocysteine and the activity of liver cystathionine synthase. Selenium and folate interacted (P < 0.0001) to influence one-carbon metabolism and cancer susceptibility such that the number of aberrant crypts and the concentrations of plasma homocysteine and liver S-adenosylhomocysteine were the highest and the concentrations of plasma folate and liver S-adenosylmethionine and the activity of liver methionine synthase were the lowest in rats fed folate-deficient diets and supplemental selenium. These results suggest that selenium deprivation ameliorates some of the effects of folate deficiency, probably by shunting the buildup of homocysteine (as a result of folate deficiency) to glutathione.[Abstract] [Full Text] [Related] [New Search]