These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dysfunctional oligodendrocyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue.
    Author: Chari DM, Huang WL, Blakemore WF.
    Journal: J Neurosci Res; 2003 Sep 15; 73(6):787-93. PubMed ID: 12949904.
    Abstract:
    We have attempted to extend a previously described rat model of focal oligodendrocyte progenitor cell (OPC) depletion, using 40 Gy X-irradiation (Chari and Blakemore [2002] Glia 37:307-313), to the adult mouse spinal cord, to examine the ability of OPCs present in adjacent normal areas to colonise areas of progenitor depletion. In contrast to rat, OPCs in the mouse spinal cord appeared to be a comparatively radiation-resistant population, as 30-35% of OPCs survived in X-irradiated tissue (whereas <1% of OPCs survive in X-irradiated rat spinal cord). The numbers of surviving OPCs remained constant with time indicating that this population was incapable of regenerating itself in response to OPC loss. Additionally, these OPCs did not contribute to remyelination of axons when demyelinating lesions were placed in X-irradiated tissue, suggesting that the surviving cells are functionally impaired. Importantly, the length of the OPC-depleted area did not diminish with time, as would be expected if progressive repopulation of OPC-depleted areas by OPCs from normal areas was occurring. Our findings therefore raise the possibility that the presence of a residual dysfunctional OPC population may inhibit colonisation of such areas by normal OPCs.
    [Abstract] [Full Text] [Related] [New Search]