These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glia-conditioned medium induces de novo synthesis of tyrosine hydroxylase and increases dopamine cell survival by differential signaling pathways.
    Author: de Bernardo S, Canals S, Casarejos MJ, Rodriguez-Martin E, Mena MA.
    Journal: J Neurosci Res; 2003 Sep 15; 73(6):818-30. PubMed ID: 12949908.
    Abstract:
    The mesencephalic astroglia-conditioned medium (GCM) greatly increases dopamine (DA) phenotype expression, and it also protects from spontaneous and toxin-induced cell death in midbrain cultures. In this study, we have investigated the signaling pathways implicated in those effects. Genistein at 5 microM, an inhibitor of tyrosine kinase receptors, and KT-5720, a protein kinase A inhibitor, blocked the GCM-induced effects on DA phenotype expression and DA cell survival but did not abolish the increased astrocytic (glial fibrillary acidic protein-positive; GFAP+) processes. We analyzed the role of phosphatidylinositol-3 kinase (PI-3K) on TH induction and cell survival, with the PI-3K inhibitors LY-294002 and wortmannin, and the role of the phosphorylation of mitogen-activated protein kinase (MAPK) with PD-98059, a p-ERK1/2 MAPK inhibitor. LY-294002 at 20-30 microM blocked the GCM-induced effects on TH expression and DA cell survival but did not abolish the increased astrocytic processes. PD-98059 at 20 and 40 microM blocked the GCM-induced effects on DA phenotype, cell survival, and GFAP expression. However, staurosporine at 10 nM, a protein kinase C inhibitor, only blocked the protective effects induced by GCM on midbrain cell apoptosis. The data presented herein show that tyrosine kinase receptors, cAMP-dependent protein kinase, PI-3K, and MAPK signaling pathways are implicated in de novo synthesis of TH+ cells induced by GCM as well as in DA cell apoptosis and that these effects are unrelated to increased GFAP expression. PKC inhibitors only abolished the GCM-induced effects on midbrain neuronal survival, suggesting that signaling pathways for DA phenotype expression and survival may be independent.
    [Abstract] [Full Text] [Related] [New Search]