These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Actin reorganization and morphological changes in human neutrophils stimulated by TNF, GM-CSF, and G-CSF: the role of MAP kinases. Author: Kutsuna H, Suzuki K, Kamata N, Kato T, Hato F, Mizuno K, Kobayashi H, Ishii M, Kitagawa S. Journal: Am J Physiol Cell Physiol; 2004 Jan; 286(1):C55-64. PubMed ID: 12954601. Abstract: Stimulation of human neutrophils with tumor necrosis factor-alpha (TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) resulted in decreased fluorescence intensity of FITC-phalloidin (actin depolymerization) and morphological changes. Cytokine-induced actin depolymerization was dependent on the concentration of cytokines used as stimuli. The maximal changes were detected at 10 min after stimulation with TNF or GM-CSF and at 20 min after stimulation with G-CSF. Cytokine-induced actin depolymerization was sustained for at least 30 min after stimulation. In contrast, N-formyl-methionyl-leucyl-phenylalanine (FMLP) rapidly (within 45 s) induced an increase in the fluorescence intensity of FITC-phalloidin (actin polymerization) and morphological changes. TNF- and GM-CSF-induced actin depolymerization and morphological changes, but not FMLP-induced responses, were partially inhibited by either PD-98059, an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase, or SB-203580, an inhibitor of p38 MAPK, and were almost completely abolished by these inhibitors in combination. G-CSF-induced responses were almost completely abolished by PD-98059 and were unaffected by SB-203580. These findings are consistent with the ability of these cytokines to activate the distinct MAPK subtype cascade in human neutrophils. Phosphorylated ERK and p38 MAPK were not colocalized with F-actin in neutrophils stimulated by cytokines or FMLP. Furthermore, FMLP-induced polarization and actin polymerization were prevented by cytokine pretreatment. These findings suggest that TNF, GM-CSF, and G-CSF induce actin depolymerization and morphological changes through activation of ERK and/or p38 MAPK and that cytokine-induced actin reorganization may be partly responsible for the inhibitory effect of these cytokines on neutrophil chemotaxis.[Abstract] [Full Text] [Related] [New Search]