These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New antifungal agents.
    Author: Gupta AK, Tomas E.
    Journal: Dermatol Clin; 2003 Jul; 21(3):565-76. PubMed ID: 12956208.
    Abstract:
    Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. New formulations are being prepared to improve absorption and efficacy of some of these standard therapies. Various new antifungals have demonstrated therapeutic potential. These new agents may provide additional options for the treatment of superficial fungal infections and they may help to overcome the limitations of current treatments. Liposomal formulations of AmB have a broad spectrum of activity against invasive fungi, such as Candida spp., C. neoformans, and Aspergillus spp., but not dermatophyte fungi. The liposomal AmB is associated with significantly less toxicity and good rates of efficacy, which compare or exceed that of standard AmB. These factors may provide enough of an advantage to patients to overcome the increased costs of these formulations. Three new azole drugs have been developed, and may be of use in both systemic and superficial fungal infections. Voriconazole, ravuconazole, and posaconazole are triazoles, with broad-spectrum activity. Voriconazole has a high bioavailability, and has been used with success in immunocompromised patients with invasive fungal infections. Ravuconazole has shown efficacy in candidiasis in immunocompromised patients, and onychomycosis in healthy patients. Preliminary in vivo studies with posaconazole indicated potential use in a variety of invasive fungal infections including oropharyngeal candidiasis. Echinocandins and pneumocandins are a new class of antifungals, which act as fungal cell wall beta-(1,3)-D-glucan synthase enzyme complex inhibitors. Caspofungin (MK-0991) is the first of the echinocandins to receive Food and Drug Administration approval for patients with invasive aspergillosis not responding or intolerant to other antifungal therapies, and has been effective in patients with oropharyngeal and esophageal candidiasis. Standardization of MIC value determination has improved the ability of scientists to detect drug resistance in fungal species. Cross-resistance of fungal species to antifungal drugs must be considered as a potential problem to future antifungal treatment, and so determination of susceptibility of fungal species to antifungal agents is an important component of information in development of new antifungal agents. Heterogeneity in susceptibility of species to azole antifungals has been noted. This heterogeneity suggests that there are differences in activity of azoles, and different mechanisms of resistance to the azoles, which may explain the present lack of cross-resistance between some azoles despite apparent structural similarities. The mechanisms of azole action and resistance themselves are not well understood, and further studies into azole susceptibility patterns are required.
    [Abstract] [Full Text] [Related] [New Search]