These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: On the origin of the cholestenoic acids in human circulation. Author: Meaney S, Babiker A, Lütjohann D, Diczfalusy U, Axelson M, Björkhem I. Journal: Steroids; 2003 Sep; 68(7-8):595-601. PubMed ID: 12957664. Abstract: 3 Beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid are metabolites of cholesterol present at significant concentrations (40-80 ng/ml) in human circulation. The 7 alpha-hydroxylated acids may be formed from cholesterol via two major pathways initiated by oxidations at either the 7 alpha- or 27-positions. In an attempt to clarify the origin and possible precursor-product relationships between these cholestenoic acids, we measured their deuterium enrichment in a unique experiment, after infusion of 10 g of [2H(6)]-cholesterol to a healthy volunteer. The observed extent and time-course of deuterium enrichment of circulating 3 beta-hydroxy-5-cholestenoic and 3 beta,7 alpha-dihydroxy-5-cholestenoic acid were almost identical, while different from that of cholesterol and 7 alpha-hydroxycholesterol. Notably, the deuterium enrichment of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was similar to that of 7 alpha-hydroxycholesterol (and its metabolite 7 alpha-hydroxy-4-cholesten-3-one), though distinct from the other cholestenoic acids. Finally, the enrichment of unesterified 27-hydroxycholesterol followed a similar, though less pronounced, time curve to the delta(5)-cholestenoic acids. In conclusion, these results suggest that plasma 3 beta-hydroxy-5-cholestenoic acid is formed from a pool of cholesterol distinct from that used for the formation of the bulk of 27-hydroxycholesterol. The results are also in accordance with a formation of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid directly from 3 beta-hydroxy-5-cholestenoic acid, and a formation of most of the circulating 7 alpha-hydroxy-4-cholesten-3-one from 7 alpha-hydroxycholesterol. These results are consistent with a flux of 7 alpha-hydroxycholesterol from the liver into the circulation, and an extrahepatic metabolism of this steroid into 7 alpha-hydroxy-3-oxo-4-cholestenoic acid.[Abstract] [Full Text] [Related] [New Search]