These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antioxidant effect of conjugated linoleic acid and vitamin A during non enzymatic lipid peroxidation of rat liver microsomes and mitochondria. Author: Palacios A, Piergiacomi V, Catalá A. Journal: Mol Cell Biochem; 2003 Aug; 250(1-2):107-13. PubMed ID: 12962148. Abstract: In the study reported here the effect of conjugated linoleic acid (CLA) and vitamin A on the polyunsaturated fatty acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria isolated from rat liver was analyzed. The effect of CLA on the polyunsaturated fatty acid composition of native microsomes was evidenced by an statistically significant p < 0.007 decrease of linoleic acid C18:2 n6, whereas in mitochondria it was observed a decrease p < 0.0001 of arachidonic acid C20:4 n6 when compared with vitamin A and control groups. Docosahexaenoic acid C22:6 n3 in mitochondria was reduced p < 0.04 in CLA and vitamin A groups when compared with control. After incubation of microsomes or mitochondria in an ascorbate (0.4 mM)-Fe++ (2.15 microM) system (120 min at 37 degrees C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes or mitochondria obtained from CLA group (received orally: 12.5 mg/daily during 10 days) than in the vitamin A group (received intraperitoneal injection: daily 0.195 g/ kg during 10 days). CLA reduced significantly maximal induced chemiluminescence in microsomes relative to vitamin A and control groups, whereas in mitochondria the effect was observed relative to control group. The polyunsaturated fatty acid composition of liver microsomes or mitochondria changed by CLA and vitamin A treatment. The polyunsaturated fatty acids mainly affected when microsomes native and peroxidized from control group were compared were linoleic, linolenic and arachidonic acids, while in vitamin A group linoleic and arachidonic acid were mainly peroxidized, whereas in CLA group only arachidonic acid was altered. In mitochondria obtained from the three groups arachidonic acid and docosahexaenoic acid showed a significant decrease when native and peroxidized groups were compared. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, show significant changes in the CLA group compare vitamin A and control groups. The simultaneous analysis of peroxidizability index, chemiluminescence and fatty acid composition demonstrated that CLA is more effective than vitamin A protecting microsomes or mitochondria from peroxidative damage.[Abstract] [Full Text] [Related] [New Search]