These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide inhibits superoxide-stimulated urea permeability in the rat inner medullary collecting duct.
    Author: Zimpelmann J, Li N, Burns KD.
    Journal: Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1160-7. PubMed ID: 12965888.
    Abstract:
    The inner medullary collecting duct (IMCD) contains relatively high nitric oxide (NO) synthetic capacity, but the effect of NO on IMCD transport remains unclear. We determined the effect of NO on basal and vasopressin (AVP)-stimulated urea (Purea) and water (Pf) permeabilities in isolated, perfused rat IMCD. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased cGMP production in IMCD, but neither SNAP (10(-4) M) nor 8-BrcGMP (10(-4) M), the cell-permeable analog of cGMP, affected basal or AVP-stimulated Purea. The free radical superoxide is produced by oxidases in the kidney and can interact with NO. To determine the effect of superoxide generation on transport, IMCDs were incubated with diethyldithiocarbamate (DETC; 10(-3) M), the inhibitor of superoxide dismutase (SOD). DETC significantly increased basal and AVP-stimulated Purea (control: 28.7 +/- 4.5 vs. DETC: 40.9 +/- 6.2 x 10(-5) cm/s; P < 0.001; n = 9). Preincubation of IMCD with SNAP or the SOD mimetic tempol completely inhibited DETC-stimulated Purea. DETC caused a significant increase in superoxide generation by IMCD, and this was blocked by SNAP. Incubation of IMCD with the NO synthase (NOS) substrate l-arginine blocked the stimulatory effect of DETC on Purea, and this was reversed by the neuronal NOS inhibitor 7-nitroindazole. In contrast, neither basal nor AVP-stimulated Pf was affected by NO donors or DETC. In summary, exogenous or endogenously produced NO does not affect basal urea transport in the IMCD but inhibits superoxide-stimulated Purea. In the inner medulla, superoxide generation by local oxidases may stimulate urea transport, and the role of endogenous NO may be to dampen this effect by decreasing superoxide levels.
    [Abstract] [Full Text] [Related] [New Search]