These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing. Author: Hirashima M, Ohgane K, Kudo K, Hase K, Ohtsuki T. Journal: J Neurophysiol; 2003 Sep; 90(3):1449-63. PubMed ID: 12966174. Abstract: Many investigators have demonstrated that in swing motions such as ball-throwing, the motion of the proximal joint (shoulder) produced assistive interaction torque for the distal joint (elbow). In line with these studies, the shoulder and elbow motions would be expected to produce the assistive interaction torque for the wrist joint as well. However, we recently showed that the interaction torque at the wrist was always counteractive to the wrist muscle torque during ball-throwing. The purpose of this study is to clarify, by means of computer simulation, whether the counteractive relationship at the wrist during ball-throwing is caused by the neural contribution or the musculoskeletal mechanical properties of the human arm. First, we simulated the throwing motions of the normal forearm-hand model by systematically changing the proximal-to-distal delay of muscle activities and could line up two candidates for the determinant of the counteractive relationship: the rest angle (neutral angle) of the wrist and the length and mass of the hand. Second, we simulated the throwing motions of the virtual forearm-hand models, showing that only nonrealistic elongation of these two parameters produced the assistive relationship between the interaction torque and muscle torque. These results suggested that the mechanical properties of the human wrist are the main determinant of the counteractive relationship, which is advantageous for keeping the state of the wrist joint stable in multi-joint upper-limb movements and would lead to avoidance of excessive wrist extension or flexion and simplification of extrinsic finger control.[Abstract] [Full Text] [Related] [New Search]