These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Donor-specific tolerance in a murine model: the result of extra-thymic T cell deletion?
    Author: van Pel M, van Breugel DW, van Wijk M, Luypen S, Vingerhoed J, Roholl PJ, Boog CJ.
    Journal: Transpl Immunol; 2003; 11(3-4):375-84. PubMed ID: 12967790.
    Abstract:
    Previously, we established a murine model, that involves the engraftment of fully allogeneic T cell depleted donor bone marrow cells in sublethally irradiated and single dose anti-CD3 treated recipient mice. These mice developed permanent stable multilineage mixed chimerism and donor-specific tolerance without graft-versus-host disease. Recently, we have shown that donor-specific tolerance is not induced and/or maintained by clonal anergy, neither by a Th1/Th2 shift, nor by suppressor or other regulatory processes. In the present study, we investigated whether clonal deletion plays a role in tolerance induction in our model. We studied the kinetics of TCRVbeta8(+) T cells in BALB/c (H-2L(d+))-->dm2 (H-2L(d-)) chimeras, in which combination of mouse strains TCRVbeta8 predominates the anti-donor response. We found that TCRVbeta8(+) T cells were specifically deleted. To our surprise, this deletion was also found in mixed chimeras, thymectomized prior to the conditioning regimen. We conclude that clonal deletion plays a role in the establishment and maintenance of donor-specific tolerance, and that the thymus is not required for this process. In addition, confocal laser-scanning microscopy clearly showed the presence of abundant amounts of donor T cells and some donor antigen presenting cells in the small intestine in thymectomized chimeras and not in other organs, suggesting that T cell selection might take place in this organ in the absence of the thymus.
    [Abstract] [Full Text] [Related] [New Search]