These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Author: Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH. Journal: Plant Physiol; 2003 Sep; 133(1):295-306. PubMed ID: 12970495. Abstract: Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies is facilitated by fatty acid-amino acid conjugate (FAC) elicitors, such as volicitin [N-(17-hydroxylinolenoyl)-L-glutamine], present in caterpillar oral secretions. Insect-induced jasmonic acid (JA) and ethylene (E) are believed to mediate the magnitude of this variable response. In maize (Zea mays) seedlings, we examined the interaction of volicitin, JA, and E on the induction of volatile emission at different levels of nitrogen (N) availability that are known to influence E sensitivity. N availability and volicitin-induced sesquiterpene emission are inversely related as maximal responses were elicited in N-deficient plants. Plants with low N availability demonstrated similar volatile responses to volicitin (1 nmol plant(-1)) and JA (100 nmol plant(-1)). In contrast, plants with medium N availability released much lower amounts of volicitin-induced sesquiterpenes compared with JA, suggesting an alteration in volicitin-induced JA levels. As predicted, low N plants exhibited greater sustained increases in wound- and volicitin-induced JA levels compared with medium N plants. N availability also altered volicitin-E interactions. In low N plants, E synergized volicitin-induced sesquiterpene and indole emission 4- to 12-fold, with significant interactions first detected at 10 nL L(-1) E. Medium N plants demonstrated greatly reduced volicitin-E interactions. Volicitin-induced sesquiterpene emission was increased by E and was decreased by pretreatment the E perception inhibitor 1-methylcyclopropene without alteration in volicitin-induced JA levels. N availability influences plant responses to insect-derived elicitors through changes in E sensitivity and E-independent JA kinetics.[Abstract] [Full Text] [Related] [New Search]