These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Author: Edenharder R, Grünhage D. Journal: Mutat Res; 2003 Sep 09; 540(1):1-18. PubMed ID: 12972054. Abstract: Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive. The metal chelating agent 1,10-phenanthroline strongly reduced mutagenicities induced by CHP and BHP (ID50=2.75 and 2.5 micromol per plate) at low concentrations but induced mutagenic activities at higher concentrations. The iron chelator deferoxamine mesylate, however, was less effective in both respects. The copper chelator neocuproine effectively inhibited mutagenicity induced by BHP (ID50=39.7 micromol per plate) and CHP (ID50=25.9 micrommol per plate), the iron chelator 2,2'-dipyridyl was less potent (ID50=6.25 mmol per plate against BHP, 0.42 mmol per plate against CHP). In the absence of BHP and CHP, yet not in the presence of these hydroperoxides, quercetin, rutin, catechin, epicatechin, and naringenin induced strong mutagenic activities in S. typhimurium TA102. Radical scavenging activities of flavonoids against peroxyl radicals generated from 2,2'-azo-bis(2-amidinopropane)dihydrochloride (AAPH) as measured in the haemolysis test, confirmed that in general flavonoids with di- or trihydroxy hydroxyl functions especially in positions 3', 4', 5' are effective radical scavengers. In this test system, however, luteolin was the most potent compound, followed by epicatechin and eriodictyol. Again, isorhamnetin was a potent inhibitor of lysis of red blood cells despite the presence of a 3'-OCH3 function. Radical scavenging activities of flavonoids against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in principle obeyed the rules outlined above. Flavanones, tamarixetin, and rhamnetin, however, were only weakly active against DPPH, while isorhamnetin was again a potent compound. From these results we conclude that in the Salmonella/reversion assay with strain TA102 antimutagenic activities of flavonoids against the peroxide mutagens CHP and BHP are mainly caused by radical scavenging effects.[Abstract] [Full Text] [Related] [New Search]