These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase C-dependent potentiation of intracellular calcium influx by sigma1 receptor agonists in rat hippocampal neurons.
    Author: Monnet FP, Morin-Surun MP, Leger J, Combettes L.
    Journal: J Pharmacol Exp Ther; 2003 Nov; 307(2):705-12. PubMed ID: 12975497.
    Abstract:
    Intracellular calcium concentration ([Ca2+]i) plays a major role in neuronal excitability, especially that triggered by the N-methyl-d-aspartate (NMDA)-sensitive glutamatergic receptor. We have previously shown that sigma1 receptor agonists potentiate NMDA receptor-mediated neuronal activity in the hippocampus and recruit Ca2+-dependent second messenger cascades (e.g., protein kinase C; PKC) in brainstem motor structures. The present study therefore assessed whether the potentiating action of sigma1 agonists on the NMDA response observed in the hippocampus involves the regulation of [Ca2+]i and PKC. For this purpose, [Ca2+]i changes after NMDA receptor activation were monitored in primary cultures of embryonic rat hippocampal pyramidal neurons using microspectrofluorometry of the Ca2+-sensitive indicator Fura-2/acetoxymethyl ester in the presence of sigma1 agonists and PKC inhibitors. We show that successive activations of the sigma1 receptor by 1-min pulses of (+)-benzomorphans or (+)-N-cyclopropylmethyl-N-methyl-1,4-diphenyl-1-ethyl-but-3-en-1-ylamine hydrochloride (JO-1784) concomitantly with glutamate time dependently potentiated before inconstantly inhibiting the NMDA receptor-mediated increase of [Ca2+]i, whereas 1,3-di-o-tolyl-guanidine, a mixed sigma1/sigma2 agonist, did not significantly modify the glutamate response. Both potentiation and inhibition were prevented by the selective sigma1 antagonist N,N-dipropyl-2-[4-methoxy-3-(211phenylethoxy) phenyl]-ethylamine monohydrochloride (NE-100). Furthermore, only (+)-benzomorphans could induce [Ca2+]i influx by themselves after a brief pulse of glutamate. A pretreatment with the conventional PKC inhibitor 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo [2,3-a] pyrrolo [3,4-c] carbazole (Gö-6976) prevented the potentiating effect of (+)-benzomorphans on the glutamate response. Our results provide further support for a general mechanism for the intracellular sigma1 receptor to regulate Ca2+-dependent signal transduction and protein phosphorylation.
    [Abstract] [Full Text] [Related] [New Search]