These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the mechanism of action of triamterene: effects on transport of Na+, K+, and H+/HCO3- -ions.
    Author: Knauf H, Wais U, Lübcke R, Albiez G.
    Journal: Eur J Clin Invest; 1976 Jan 30; 6(1):43-50. PubMed ID: 130243.
    Abstract:
    The rat salivary duct epithelium, which actively transports Na+, K+, and H+/HCO3- in a manner similar to renal distal tubules, was used as a model tissue to study the mechanism of action of triamterene on electrolyte transport. 10(-4) M triamterene completely blocked Na+ resorption and lowered net K+ secretion to half that of controls, whereas HCO3- accumlated in the lumen, probably due to a decrease in H+ secretion. The rates of K+ and H+/HCO3- transport in the presence of triamterene did not differ from those determined after omission of Na+ from the luminal fluid. This was considered to be evidence against a direct action of triamterene on transport of K+ and H+/HCO3-. Triamterene rapidly and reversibly reduced the transepithelial electrical potential difference. This was due to almost complete abolition of Na+ conductance of the luminal membrane at 10(-4) M triamterene, whereas K+ conductance was not altered. Triamterene, administered in vitro from the interstitial side of the isolated duct epithelium was ineffective even at the highest concentrations. The activities of the Na-K-ATPase, the Mg-ATPase and the microsomal HCO3-ATPase were influenced by 10(-4) M triameterene in a similiar fashion. These effects were clearly demonstrated only in the homogenate of the duct tissue and not in intact cells in the isolated duct preparation. Therefore they were considered unspecific. The transport studied demonstrate a primary effect of triamterene on Na+ entry from lumen to cell. Influences on net K+ and H+/HCO3 transport are secondary consequences of functional coupling between movement of Na+ and movement of K+ and H+ across the luminal cell membrane.
    [Abstract] [Full Text] [Related] [New Search]