These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Excitation-contraction coupling in heart. XIX. Effect of hypoxia on calcium transport by subcellular particles in the isolated perfused rat heart. Author: Lee SL, Balasubramanian V, Dhalla NS. Journal: Can J Physiol Pharmacol; 1976 Feb; 54(1):49-58. PubMed ID: 130966. Abstract: To examine the role of changes in calcium transport by subcellular particles in the pathogenesis of contractile failure due to oxygen lack, both mitochondrial and microsomal fractions were obtained from the isolated hypoxic rat hearts and their calcium binding and uptake abilities were determined by the Millipore filtration technique. The contractile force decreased by about 40, 60 and 70% of the control within 5, 10 and 30 min respectively, of perfusing the heart with hypoxic medium containing glucose. In hearts perfused for 10 min with hypoxic medium containing glucose, calcium binding and uptake by the microsomal fraction decreased significantly. However, mitochondrial calcium binding, but not uptake, decreased significantly on perfusing the hearts with hypoxic medium containing glucose for 20 to 30 min when the microsomal calcium transport was markedly depressed. Reduction in contractile force, calcium binding and uptake by the microsomal fraction as well as calcium binding by mitochondria of hearts made hypoxic for 30 min recovered towards normal upon reperfusion with control medium for 15 min. On the other hand, omitting glucose from the hypoxic medium significantly decreased calcium binding by mitochondrial and microsomal fractions within 10 min of perfusion in comparison to the control and accelerated the effects of hypoxia upon contractile force and microsomal calcium uptake. In contrast to the hypoxic hearts, the mitochondrial calcium uptake decreased significantly and the magnitude of depression in the microsomal calcium binding was appreciably greater in hearts made to fail to a comparable degree upon perfusion with substrate-free medium. The observed defects in calcium transporting properties of microsomal and mitochondrial membranes appear secondary to the contactile failure in hypoxic hearts.[Abstract] [Full Text] [Related] [New Search]