These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of intracellular Mg2+ by superoxide in amnion cells.
    Author: Masumoto N, Tasaka K, Mizuki J, Miyake A, Tanizawa O.
    Journal: Biochem Biophys Res Commun; 1992 Jan 31; 182(2):906-12. PubMed ID: 1310402.
    Abstract:
    Changes of intracellular free Mg2+ concentration ([Mg2+]i) in human amnion cells induced by superoxide anion were determined using a highly Mg(2+)-sensitive fluorescent dye Mg(2+)-fura2 or Mg(2+)-indol. Superoxide anion, produced by addition of xanthine oxidase to hypoxanthine, induced decrease of [Mg2+]i. The decrease was significantly inhibited by an anion channel blocker, 4,4'diisothiocyano-2,2' disulfonic acid stilbene (DIDS). Superoxide dismutase (SOD), injected into cells by cell fusion, also inhibited the change of [Mg2+]i, but catalase did not. Superoxide anion induced prompt increase of intracellular pH (pHi) as well as decrease of [Mg2+]i and subsequently activated the increase of intracellular free Ca2+ ([Ca2+]i) and the release of arachidonate. In contrast to superoxide anion, NH4Cl which induces increase of pHi in amnion cells increased [Mg2+]i. The elevation of basal level of [Mg2+]i by Mg(2+)-ionophore inhibited the change of [Ca2+]i and the release of arachidonate induced by superoxide anion. These results suggest that superoxide anion, transported through anion channels into cells, decreases [Mg2+]i directly, not due to a pH-effect and that the decrease of [Mg2+]i may regulate biological functions of the cells via increase of [Ca2+]i.
    [Abstract] [Full Text] [Related] [New Search]