These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets.
    Author: Geiger J, Nolte C, Butt E, Sage SO, Walter U.
    Journal: Proc Natl Acad Sci U S A; 1992 Feb 01; 89(3):1031-5. PubMed ID: 1310537.
    Abstract:
    Most platelet agonists activate and elevate the cytosolic free calcium concentration in human platelets through receptor-dependent mechanisms that are antagonized by cAMP- and cGMP-elevating agents. Nitrovasodilators such as nitroprusside and endothelium-derived relaxing factor are potent cGMP-elevating platelet inhibitors. In the present study, the role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of ADP- and thrombin-evoked calcium elevation and activation of human platelets was investigated. Preincubation of platelets with 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP; a membrane-permeant selective activator of the cGMP-dependent protein kinase that does not significantly affect cGMP-regulated phosphodiesterases) inhibited the thrombin-induced phosphorylation mediated by myosin light chain kinase and protein kinase C. Nitrovasodilator-induced protein phosphorylation in human platelets was distinct from that induced by cAMP-elevating prostaglandins and could be mimicked by 8-pCPT-cGMP. Preincubation of human platelets with nitrovasodilators or 8-pCPT-cGMP inhibited the ADP- and thrombin-evoked calcium elevation in the presence and absence of external calcium. Nitrovasodilators and 8-pCPT-cGMP also inhibited the agonist-induced Mn2+ influx, but stopped-flow experiments indicated that the ADP receptor-operated cation channel was not significantly inhibited. These results suggest that in human platelets nitrovasodilators inhibit the agonist-induced calcium mobilization from intracellular stores and the secondary store-related calcium influx but not the ADP receptor-operated cation channel. The results also suggest that these nitrovasodilator effects are mediated by cGMP and the cGMP-dependent protein kinase.
    [Abstract] [Full Text] [Related] [New Search]