These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulus-response uncoupling in the neutrophil. Adenosine A2-receptor occupancy inhibits the sustained, but not the early, events of stimulus transduction in human neutrophils by a mechanism independent of actin-filament formation.
    Author: Cronstein BN, Haines KA.
    Journal: Biochem J; 1992 Feb 01; 281 ( Pt 3)(Pt 3):631-5. PubMed ID: 1311169.
    Abstract:
    Generation of superoxide anion (O2-) in response to occupancy of neutrophil chemoattractant receptors requires both early events ('triggering') and sustained signals ('activation'). We have previously demonstrated that occupancy of adenosine A2 receptors inhibits O2- generation by neutrophils. In parallel, adenosine-receptor occupancy promotes association of bound N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors with the cytoskeleton, a process associated with termination of neutrophil activation (stimulus-response uncoupling). We undertook this study to determine whether inhibition of neutrophil function by adenosine-receptor occupancy requires intact actin filaments and to examine the effect of adenosine-receptor occupancy on the stimulated generation of intracellular signals involved in neutrophil triggering and activation. Occupancy of adenosine A2 receptors by 5'-N-ethylcarboxamidoadenosine (NECA, 1 microM) significantly increased (130 +/- 1% of control, P less than 0.001, n = 3) association of [3H]fMLP with cytoskeletal preparations. Cytochalasin B (5 micrograms/ml), an agent which disrupts actin filaments, completely blocked association of [3H]fMLP with cytoskeletal preparations, as previously reported. However, NECA markedly increased association of [3H]fMLP with the cytoskeleton even in the presence of cytochalasin B (P less than 0.0002). Moreover, NECA did not significantly affect either the early (30s) or the late (5 min) formation of actin filaments after stimulation by chemoattractant (fMLP, 0.1-100 nM). Cytochalasin B markedly inhibited actin-filament formation by stimulated neutrophils, and NECA did not reverse the effect of cytochalasin B on actin-filament formation. Adenosine-receptor occupancy did not affect the rapid peak in diacylglycerol generation (less than or equal to 15 s) from either [3H]arachidonate- or [14C]glycerol-labelled phospholipid pools. However, as would be predicted if occupancy of the adenosine receptor was a signal for early termination of cell activation, NECA (1 microM) markedly diminished the slow sustained generation of diacylglycerol. These results suggest that adenosine-A2-receptor occupancy does not affect triggering of the neutrophil, but that occupancy of adenosine receptors is an early signal for the termination of neutrophil activation, i.e. the 'premature' finish of signal transduction. Moreover, these data indicate that at least two pathways are available for increasing the association of ligated chemoattractant receptors with the cytoskeleton of neutrophils: F-actin-dependent and -independent.
    [Abstract] [Full Text] [Related] [New Search]