These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteolytic processing and glycosylation of cathepsin B. The role of the primary structure of the latent precursor and of the carbohydrate moiety for cell-type-specific molecular forms of the enzyme. Author: Mach L, Stüwe K, Hagen A, Ballaun C, Glössl J. Journal: Biochem J; 1992 Mar 01; 282 ( Pt 2)(Pt 2):577-82. PubMed ID: 1312333. Abstract: The lysosomal cysteine proteinase cathepsin B is synthesized in cultured human hepatoma HepG2 cells as an inactive 44 kDa precursor and subsequently processed to the mature single-chain enzyme with a molecular mass of 33 kDa. Intralysosomal conversion into the two-chain form results in subunits of 27 kDa, 24 kDa (heavy chain) and 5 kDa (light chain). Enzymic deglycosylation reveals that the 27 kDa polypeptide is the glycosylated variant of the carbohydrate-free 24 kDa heavy-chain form. The intracellular transport to the lysosomes is dependent upon mannose 6-phosphate-containing N-linked oligosaccharides. Receptor-mediated endocytosis of human skin-fibroblast-derived procathepsin B by HepG2 cells resulted in processed molecular forms that are not distinguishable from endogenous cathepsin B, thus favouring rather a cell-type-specific processing than structural differences due to the source of the proenzyme. The conversion step of single-chain catehpsin B into the two-chain enzyme is inhibited in vivo by the irreversible cysteine-proteinase inhibitors Z-Phe-Ala-CHN2 and, albeit weaker, Z-Phe-Phe-CHN2. Both substances have no effect on the activation of procathepsin B to the mature enzyme. The carbohydrate moiety of cathepsin B exerts no significant influence on the stability and the enzymatic activity of the enzyme.[Abstract] [Full Text] [Related] [New Search]