These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors.
    Author: Ferris CD, Cameron AM, Huganir RL, Snyder SH.
    Journal: Nature; 1992 Mar 26; 356(6367):350-2. PubMed ID: 1312682.
    Abstract:
    Release of intracellular Ca2+ by inositol 1,4,5-trisphosphate (InsP3) occurs through specific receptor proteins which are ligand-activated Ca2+ channels. Changes in intracellular Ca2+ regulate many cellular functions. This Ca2+ release is a discontinuous quantal process in which successive increments of InsP3 transiently release precise amounts of Ca2+ (refs 4-6). Possible explanations of quantal Ca2+ release have included rapid degradation of InsP3, reciprocity of Ca2+ release and sequestration, desensitization of InsP3 receptors, or actions of InsP3 on discrete compartments of Ca2+ with variable sensitivity to InsP3 (ref. 4). We successfully reconstituted InsP3-induced Ca2+ flux in vesicles containing only purified InsP3 receptor protein. The reconstituted vesicles retain the regulatory features of the InsP3 receptor, including phosphorylation sites and modulation of Ca2+ release by adenine nucleotides. Using these reconstituted vesicles, we show here that quantal flux of Ca2+ elicited by InsP3 is a fundamental property of its receptor.
    [Abstract] [Full Text] [Related] [New Search]