These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium channels and control of cytosolic calcium in rat and bovine zona glomerulosa cells. Author: Quinn SJ, Brauneis U, Tillotson DL, Cornwall MC, Williams GH. Journal: Am J Physiol; 1992 Mar; 262(3 Pt 1):C598-606. PubMed ID: 1312778. Abstract: Rat and bovine adrenal zona glomerulosa (ZG) cells possess a low-threshold, voltage-dependent Ca2+ current that was characterized using whole cell voltage clamp techniques. Activation of this current is observed at membrane potentials above -80 mV with maximal peak Ca2+ current elicited near -30 mV. Inactivation of the Ca2+ current was half-maximal between -74 and -58 mV, depending on the external Ca2+ concentration and was nearly complete at -40 mV. The voltage dependency of the current indicates that a calcium current could be sustained at membrane potentials between -80 and -40 mV and thereby elevates cytosolic calcium (Cai) levels. Under basal conditions, Cai is stable in single rat ZG cells, whereas more than half of the bovine ZG cells produce repeated Cai transients. These Cai transients, which are blocked by removal of external Ca2+ or addition of Ni2+, are likely due to repetitive electrical activity in bovine ZG cells. Cai responses can be elicited by small increases in external K+ concentration (5-10 mM) in both rat and bovine ZG cells, indicating the opening of low-threshold Ca2+ channels. However, these Cai changes remain robust at high external K+ concentrations (20-40 mM). In experiments combining Cai measurements and whole cell voltage clamp, a steep dependence of Cai on membrane potential was revealed beginning at depolarizing voltages near a holding membrane potential of -80 mV. A maximal increase in Cai occurred near -30 mV (equivalent to an external K+ concentration of 40 mM), a membrane voltage at which sustained current through low-threshold Ca2+ channels should be negligible. These data raise the possibility of additional voltage-dependent pathways for Ca2+ influx.[Abstract] [Full Text] [Related] [New Search]