These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alterations in eicosanoid production by rat alveolar type II cells isolated after silica-induced lung injury. Author: Panos RJ, Voelkel NF, Cott GR, Mason RJ, Westcott JY. Journal: Am J Respir Cell Mol Biol; 1992 Apr; 6(4):430-8. PubMed ID: 1312852. Abstract: Although alveolar type II cells in primary culture have been shown to produce eicosanoids and exposure of type II cells to silica in vitro alters eicosanoid production, the production of eicosanoids by alveolar type II cells isolated after acute lung injury in vivo has not been evaluated. Therefore, we investigated the production of arachidonic acid (AA) metabolites by alveolar type II cells isolated after silica-induced lung injury. Alveolar type II cells were isolated from rats 14 days after intratracheal silica instillation and from untreated animals. Type II cells were separated into normotrophic and hypertrophic populations by centrifugal elutriation, and secreted eicosanoids were determined under basal and stimulated conditions by enzyme immunoassay on the day of isolation and after 1 day in culture. Under basal conditions, freshly isolated type II cells from silica-treated animals produced more prostaglandin (PG) E2 than 6-keto-PGF1 alpha or thromboxane B2 (TxB2). Production of all three prostanoids increased with increasing cell size. The calcium ionophore A23187 stimulated a less than 2-fold increase in PGE2 and 6-keto-PGF1 alpha production in all groups of cells. In contrast, this calcium ionophore greatly enhanced TxB2 and leukotriene C4 (LTC4) production by normotrophic type II cells from both untreated and silica-treated animals. Incubation with exogenous AA suggested that the increased capability of the hypertrophic cells to synthesize PGE2 and TxB2 was due primarily to an increase in arachidonate availability. The hypertrophic type II cells also appear to have increased prostacyclin synthase activity. There were no differences in the catabolism of PGE2 between the normotrophic and the hypertrophic type II cells.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]