These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Author: Vouret-Craviari V, Van Obberghen-Schilling E, Rasmussen UB, Pavirani A, Lecocq JP, Pouysségur J. Journal: Mol Biol Cell; 1992 Jan; 3(1):95-102. PubMed ID: 1312881. Abstract: alpha-Thrombin (thrombin) stimulates phospholipase C and modulates the activity of adenylate cyclase in a number of cell types via G protein-coupled receptors. It is also a potent growth factor, notably for a line of hamster fibroblasts (CCL39 cells). Recently, predicted amino acid sequences for human and hamster thrombin receptors have been reported that display a putative thrombin cleavage site in the N-terminal extracellular domain. Synthetic peptides corresponding to 14 residues carboxyl to the presumed thrombin cleavage site of the human receptor have been shown to activate platelets as well as the thrombin receptor expressed in Xenopus oocytes. In the present study we have examined the effects of synthetic peptides corresponding to the same region of the hamster receptor (S-42-L-55) and shorter peptides (2-7 residues) on signal transducing systems in CCL39 cells. Our results indicate that hamster receptor peptides of greater than or equal to 5 residues effectively stimulate phospholipase C in CCL39 cells via the thrombin receptor and induce rapid desensitization of the response. The same peptides also inhibit adenylate cyclase in a pertussis toxin-sensitive manner. Although the peptides are potent agonists of serotonin release in platelets, unlike thrombin, by themselves they are not mitogenic. However, they potentiate DNA synthesis in cooperation with growth factors possessing tyrosine kinase receptors. Hence, we conclude that the potent mitogenic action of thrombin cannot be accounted for solely by the activation of the cloned receptor. We postulate the existence of an additional receptor activated by thrombin, which is required for its full mitogenic potential.[Abstract] [Full Text] [Related] [New Search]