These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The evolution of myiasis in blowflies (Calliphoridae).
    Author: Stevens JR.
    Journal: Int J Parasitol; 2003 Sep 15; 33(10):1105-13. PubMed ID: 13129533.
    Abstract:
    Blowflies (Calliphoridae) are characterised by the ability of their larvae to develop in animal flesh. Where the host is a living vertebrate, such parasitism by dipterous larvae is known as myiasis. However, the evolutionary origins of the myiasis habit in the Calliphoridae, a family which includes the blowflies and screwworm flies, remain unclear. Species associated with an ectoparasitic lifestyle can be divided generally into three groups based on their larval feeding habits: saprophagy, facultative ectoparasitism, and obligate parasitism, and it has been proposed that this functional division may reflect the progressive evolution of parasitism in the Calliphoridae. In order to evaluate this hypothesis, phylogenetic analysis of 32 blowfly species displaying a range of forms of ectoparasitism from key subfamilies, i.e. Calliphorinae, Luciliinae, Chrysomyinae, Auchmeromyiinae and Polleniinae, was undertaken using likelihood and parsimony methods. Phylogenies were constructed from the nuclear 28S large subunit ribosomal RNA gene (28S rRNA), sequenced from each of the 32 calliphorid species, together with suitable outgroup taxa, and mitochondrial cytochrome oxidase subunit I and II (COI+II) sequences, derived primarily from published data. Phylogenies derived from each of the two markers (28S rRNA, COI+II) were largely (though not completely) congruent, as determined by incongruence-length difference and Kishino-Hasegawa tests. However, the phylogenetic relationships of blowfly subfamilies based on molecular data did not concur with the pattern of relationships defined by previous morphological analysis; significantly, molecular analysis supported the monophyly of blowflies (Calliphoridae), distinct from the bot and warble flies (Oestridae). Comparative analysis of the myiasis habit based primarily on the 28S rRNA phylogeny indicated that obligate parasitism, and the ability to initiate myiasis in higher vertebrates, has multiple independent origins across myiasis-causing flies (Calliphoridae and Oestridae) and in at least three subfamilies of blowfly (Calliphoridae). Finally, the general association of various blowfly genera and subfamily clades with particular continental and geographical regions suggests that these groups probably came into existence in the Late Cretaceous period, following the break-up of Gondwana.
    [Abstract] [Full Text] [Related] [New Search]