These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of PSD-93 as a substrate for the Src family tyrosine kinase Fyn.
    Author: Nada S, Shima T, Yanai H, Husi H, Grant SG, Okada M, Akiyama T.
    Journal: J Biol Chem; 2003 Nov 28; 278(48):47610-21. PubMed ID: 13129934.
    Abstract:
    In order to study the role of tyrosine kinase signaling in the post-synaptic density (PSD), tyrosine-phosphorylated proteins associated with the PSD-95/NMDA receptor complex were analyzed. The NMDA receptor complex from the mouse brain was successfully solubilized with deoxycholate and immunopurified with anti-PSD-95 or anti-phosphotyrosine antibody. Immunoblot analyses revealed that the predominantly tyrosine-phosphorylated proteins in the NMDA receptor complex are the NR2A/B subunits and a novel 120 kDa protein. Purification and microsequencing analysis showed that the 120 kDa protein is mouse PSD-93/Chapsyn-110. Recombinant PSD-93 was phosphorylated by Fyn in vitro, and Tyr-384 was identified as a major phosphorylation site. Tyrosine phosphorylation of PSD-93 was greatly reduced in brain tissue from Fyn-deficient mice compared with wild-type mice. Furthermore, an N-terminal palmitoylation signal of PSD-93 was found to be essential for its anchoring to the membrane, where Fyn is also localized. In COS7 cells, exogenously expressed PSD-93 was phosphorylated, dependent on its membrane localization. In addition, tyrosine-phosphorylated PSD-93 was able to bind to Csk, a negative regulator of Src family kinases, in vitro as well as in a brain lysate. These results suggest that PSD-93 serves as a membrane-anchored substrate of Fyn and plays a role in the regulation of Fyn-mediated modification of NMDA receptor function.
    [Abstract] [Full Text] [Related] [New Search]