These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium channel upregulation in response to activation of neurotrophin and surrogate neurotrophin receptor tyrosine kinases. Author: Black MJ, Woo Y, Rane SG. Journal: J Neurosci Res; 2003 Oct 01; 74(1):23-36. PubMed ID: 13130503. Abstract: Modulation of calcium channel expression and function in the context of neurotrophin induced neuronal differentiation remains incompletely understood at a mechanistic level. We addressed this issue in the PC12 model neuronal system using patch clamp electrophysiology combined with ectopic expression of the human beta platelet-derived growth factor (betaPDGF) receptor as a surrogate neurotrophin receptor system. PC12 cells ectopically expressing the human betaPDGF receptor were treated with PDGF or nerve growth factor (NGF) for up to 7 days, and Ca2+ channel subtype expression was analyzed using selective pharmacological agents in both whole-cell and cell-attached single channel patch clamp configurations. PDGF-induced upregulation of N- and P/Q-type Ca2+ channel currents completely mimicked upregulation of these currents caused by NGF stimulation of the endogenous TrkA receptor tyrosine kinase (RTK). Neither PDGF nor NGF significantly altered L- or R-type currents. Single channel recordings together with immunocytochemistry implied that growth factor-induced increases in whole-cell Ca2+ currents were a result of synthesis of new channels, and that whereas increased N channel density was apparent in the soma, additional P/Q channels distributed preferentially to extrasomal locations, most likely the proximal neurites. Finally, specific signaling-deficient mutant forms of the betaPDGF receptor were used to show that activation of Src, PI3-kinase, RasGAP, PLCgamma or SHP-2 (some of which are implicated in certain other aspects of PC12 cell differentiation) by RTKs is not required for growth factor-induced Ca2+ channel upregulation. In contrast, activation of the Ras-related G-protein Rap1 was found critical to this process.[Abstract] [Full Text] [Related] [New Search]