These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of L-type calcium channels by internal GTP [gamma S] in mouse pancreatic beta cells.
    Author: Ammälä C, Berggren PO, Bokvist K, Rorsman P.
    Journal: Pflugers Arch; 1992 Jan; 420(1):72-7. PubMed ID: 1313169.
    Abstract:
    Pretreatment of pancreatic beta cells with pertussis toxin resulted in a 30% increase in peak whole-cell Ca2+ currents recorded in the absence of exogenous intracellular guanine nucleotides. Intracellular application of 90 microM GTP[gamma S], by liberation from a caged precursor, resulted in 40% reduction of the peak Ca2+ current irrespective of whether the current was carried by Ca2+ or Ba2+. Effects on the delayed outward K+ current were small and restricted to a transient Ca(2+)-dependent K+ current component. Inhibition by GTP[gamma S] of the Ca2+ current was not mimicked by standard GTP and could not be prevented either by pretreatment with pertussis toxin or by inclusion of GDP[beta S] or cyclic AMP in the intracellular medium. The inhibitory effect of GTP[gamma S] could be counteracted by a prepulse to a large depolarizing voltage. A similar effect of a depolarizing prepulse was observed in control cells with no exogenous guanine nucleotides. These observations indicate that inhibition of beta cell Ca2+ current by G protein activation results from direct interaction with the channel and does not involve second-messenger systems. Our findings also suggest that the beta cell Ca2+ current is subject to resting inhibition by G proteins.
    [Abstract] [Full Text] [Related] [New Search]