These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of lithium isotopes on the myo-inositol 1-phosphatase reaction in rat brain, liver, and testes.
    Author: Parthasarathy R, Parthasarathy L, Ramesh TG, Devi CS, Vadnal RE.
    Journal: Life Sci; 1992; 50(19):1445-50. PubMed ID: 1315412.
    Abstract:
    Enzyme inhibition studies were performed with several lithium isotopes in order to more precisely define how lithium inhibits the enzyme myo-inositol 1-phosphatase. This lithium-induced inhibition is thought to be central to the therapeutic effects of lithium in the treatment of manic-depressive disorder. Naturally occurring lithium (NLi) exists as a combination of isotopes: 6Li and 7Li. Lethality studies were performed comparing 6LiCl, 7LiCl, and NLiCl, did not demonstrate a differential effect as previous studies had suggested. Enzyme inhibition studies were performed with these individual lithium isotopes, and compared to the effects of the naturally occurring combination (NLi) on the inhibition of myo-inositol 1-phosphatase using a partially purified enzyme preparation from rat brain, liver and testes. Identical inhibition was observed with all lithium isotopes and their combinations. In addition, both D- and L-myo-inositol 1-phosphates were used as enzyme substrates and found to be equivalent. These experiments, along with previous work demonstrating lithium acting as an uncompetitive inhibitor in the reaction, and the lack of lithium binding sites on the enzyme, suggests the hypothesis that lithium is possibly inhibiting this reaction by interfering with the formation of a transition cyclic intermediate, myo-inositol 1,3-cyclic phosphate, which may be formed from either the D- or L-substrates. This proposal is in contrast to previous suggestions regarding the inhibitory mechanism of action of lithium on the myo-inositol 1-phosphatase reaction.
    [Abstract] [Full Text] [Related] [New Search]