These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic inhibition-potentiation of the crosslinking of synapsin I with brain microtubules by protein kinase FA (an activator of ATP.Mg-dependent protein phosphatase). Author: Yang SD, Song JS, Hsieh YT, Chan WH, Liu HW. Journal: Biochem Biophys Res Commun; 1992 Apr 30; 184(2):973-9. PubMed ID: 1315541. Abstract: The ATP.Mg-dependent type-1 protein phosphatase activating factor (FA) was identified as a protein kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton and is believed to be involved in the modulation of neurotransmission. More importantly, more than 90% of the phosphates in 32P-synapsin I phosphorylated by FA could be removed by the activated ATP.Mg-dependent type-1 protein phosphatase and the synapsin I phosphatase activity was found to be strictly FA-dependent. Functional study further revealed that as a synapsin I kinase, factor FA could phosphorylate synapsin I and thereby inhibits crosslinking of synapsin I with tubulin, while as a synapsin I phosphatase activator, FA could promote the crosslinking copolymerization of synapsin I with tubulin. Taken together, the results provide initial evidence that a cyclic modulation of the crosslinking copolymerization of synapsin I with brain microtubules can be controlled by factor FA, representing an efficient cyclic cascade control mechanism for the regulation of axonal transport process during neurotransmission.[Abstract] [Full Text] [Related] [New Search]