These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Author: Luo JH, Aurelian L. Journal: J Biol Chem; 1992 May 15; 267(14):9645-53. PubMed ID: 1315764. Abstract: The large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is a chimera consisting, at the amino terminus, of a Ser/Thr protein kinase (PK) with features of a signal peptide and a transmembrane (TM) helical segment, and at the carboxy-terminus, of the ribonucleotide reductase (Chung et al., 1989, 1990). Membrane immunofluorescence of ICP10 transformed cells with antibodies to synthetic peptides located upstream or downstream of the TM indicates that ICP10 is a membrane-spanning protein. Site-directed and deletion mutants were used to further characterize ICP10-PK. Mutation of Gly106 in catalytic motif I or of the invariant Lys in catalytic motif II, and deletion of both motifs (amino acids 106-178) did not eliminate kinase activity. PK activity was retained by the invariant Lys mutant expressed in bacteria and following protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to membrane filters. Both ICP10 and the invariant Lys mutant bound 14C-labeled rho-fluorosulfonylbenzoyl 5'-adenosine, an ATP affinity analog. The deletion mutant had 4-fold lower kinase activity than ICP10-PK, and it was insensitive to Mn2+, suggesting that these motifs are involved in Mn2+ activation of kinase activity. PK activity was lost by deletion of the TM segment (amino acid residues 85-106).[Abstract] [Full Text] [Related] [New Search]