These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid. Author: Takenaka T, Epstein M, Forster H, Landry DW, Iijima K, Goligorsky MS. Journal: Am J Physiol; 1992 May; 262(5 Pt 2):F799-806. PubMed ID: 1317119. Abstract: We have recently proposed that the actions of endothelin (ET) are in part mediated by opening of chloride channels (K. Iijima, L. Lin, A. Nasjletti, and M. S. Goligorsky. Am. J. Physiol. 260 (Cell Physiol. 29: C982-C992, 1991). In the present study the ability of a chloride channel inhibitor, an indanyloxyacetic acid (IAA-94), to block ET-induced effects was examined in cultured vascular smooth muscle cells (VSMC) by spectrofluorometry and direct videomicroscopic visualization of the renal microcirculation in isolated perfused hydronephrotic kidneys (IPHK). A fluorescein isothiocyanate (FITC)-labeled IAA-94 analogue showed specific binding to VSMC. IAA-94 (30 microM) neither affected basal cytosolic calcium concentration ([Ca2+]i) in VSMC nor peak response to ET, but it significantly curtailed sustained elevation of [Ca2+]i (half-time recovery was 147 +/- 23 vs. 248 +/- 33 s in control, P less than 0.05). IAA-94 blunted ET-induced membrane depolarization from 24.5 +/- 3.3 to 8.0 +/- 1.8 mV. In IPHK, ET constricted afferent arterioles (AA) by 29 +/- 2% (18.7 +/- 0.8 to 13.2 +/- 0.6 microns, P less than 0.001). Isradipine reversed this ET-induced vasoconstriction. Pretreatment with IAA-94 did not alter AA diameter, but markedly attenuated ET-induced AA constriction (reduction of AA diameters by only 9 +/- 2%, P less than 0.001). The subsequent addition of isradipine (0.1-1 microM) did not further dilate AA. Our data indicate that IAA-94 markedly attenuates AA vasoconstriction elicited by ET and suggest that ET-induced opening of chloride channels, membrane depolarization, and subsequent activation of voltage-dependent calcium channels contribute to the vasoconstrictor mechanisms of this peptide.[Abstract] [Full Text] [Related] [New Search]