These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 2' (or 3')-O-(2, 4, 6-trinitrophenyl)adenosine 5'-triphosphate as a probe for the binding site of heavy meromyosin ATPase. Author: Hiratsuka T. Journal: J Biochem; 1975 Dec; 78(6):1135-47. PubMed ID: 131793. Abstract: 1. From NMR, IR and visible absorption studies of 2'(or 3')-O-(2, 4, 6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), 2'(or 3')-O-(2, 4, 6-trinitrophenyl) adenosine (TNP-Ad(, and 1-(2'-hydroxyethoxy)-2, 4, 6-trinitrobenzene (TNP-EG), it was concluded that there is an intramolecular interaction between the base and 2, 4, 6-trinitrophenyl (TNP) moieties in the TNP-ATP molecule. 2. A broad new absorption band was observed in the 530-630 nm region when excess indole was added to reaction mixtures containing TNP-ATP dissolved in 50% methanol or dimethyl sulfoxide. On addition of aromatic amino acid derivatives, methanol or dimethyl sulfoxide. On addition of aromatic amino acid derivatives, TNP-ATP and TNP-Ad underwent spectral shifts in the 400-550 nm region. The formation of a 1:1 complex apparently occurred between TNP-ATP and aromatic amino acid derivatives, and the complex with N-acetyltryptophan was stable in 50% methanol. The difference spectrum of TNP-EG vs. TNP-ATP closely resembled that induced by the addition of N-acetyltryptophan to the TNP-ATP solution. 3. The binding of 2'(or 3')-O-(2, 4, 6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) to heavy meromyosin (HMM) was studied by the rapid gel equilibrium method using Sephadex G-25. A dissociation constant of 1.4 muM and a maximum binding number of 1.8 were obtained in 0.15 M KCl, 10 mM MgCl2, and 50 mM Tris-HCl (pH 8.0) at 25 degrees. TNP-ADP bound to the enzyme caused a characteristic spectral shift in the visible region. This spectral shift was explained in terms of an interaction between tryptophanyl residues and the adenine base of TNP-ADP bound to the enzyme. TNP-ADP quenched the tryptophanyl fluorescence, but TNP-EG and TNP-Ad did not. In the presence of 6 M guanidine hydrochloride, TNP-ADP scarcely quenched the tryptophanyl fluorescence, its effect being comparable to that of TNP-Ad.[Abstract] [Full Text] [Related] [New Search]