These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The fructose 6-phosphate site of phosphofructokinase. Epimeric specificity.
    Author: Koerner TA, Voll RJ, Ashour AL, Younathan ES.
    Journal: J Biol Chem; 1976 May 25; 251(10):2983-6. PubMed ID: 131802.
    Abstract:
    The epimeric specificity of the catalytic site of rabbit muscle phosphofructokinase was investigated by testing three ketose phosphates as alternate substrates. These (and their epimeric carbons) included: D-psicose-6-P (C-3), D-tagatose-6-P (C-4), and L-sorbose-6-P (C-5). The Michaelis constants (and relative maximal velocities) were: 3.0 mM (45%), 0.054 mM (104%), and 11 mM (15%), respectively. Under the same conditions, D-fructose-6-P had a Km of 0.043 mM and an arbitrary Vmax of 100%. The low affinity of the enzyme for D-psicose-6-P indicates that the L configuration at C-3 is required for effective binding, a specificity similar to several other fructose-metabolizing enzymes. The D configuration at C-5 is also important for tight binding and the proper orientation of the phosphate group of the substrate. The kinetic constants of D-tagatose-6-P were identical with those of D-fructose-6-P, within experimental error. Thus, the configuration at C-4 is not essential for activity; an indication that D-tagatose may be utilized in mammalian tissues. A novel method for the synthesis of D-psicose-6-P and an improved procedure for the synthesis of D-tagatose-6-P are described. All products and intermediates were characterized unequivocally by chemical and physical methods.
    [Abstract] [Full Text] [Related] [New Search]