These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proliferative effect of PGD2 on osteoblast-like cells; independent activation of pertussis toxin-sensitive GTP-binding protein from PGE2 or PGF2 alpha.
    Author: Tsushita K, Kozawa O, Tokuda H, Oiso Y, Saito H.
    Journal: Prostaglandins Leukot Essent Fatty Acids; 1992 Apr; 45(4):267-74. PubMed ID: 1318547.
    Abstract:
    PGD2 stimulated DNA synthesis and decreased alkaline phosphatase activity dose-dependently between 10 nM and 10 microM in osteoblast-like MC3T3-E1 cells. PGD2 had little effect on cAMP production, but caused very rapid enhancement of phosphoinositide (PI) hydrolysis dose-dependently between 10 nM and 10 microM. The formation of inositol trisphosphate (IP3) induced by PGD2 reached the peak within 1 min and decreased thereafter, which is more rapid than that induced by PGE2 or PGF2 alpha and both PGE2 and PGF2 alpha affected PGD2-induced IP3 formation additively. Pertussis toxin (PTX) inhibited both PGD2-induced formation of inositol phosphates and DNA synthesis. The degree of these PTX (1 micrograms/ml)-induced inhibitions was similar. In addition, neomycin, a phospholipase C inhibitor, inhibited PGD2-induced DNA synthesis as well as the formation of IP3, and the patterns of both inhibitions were similar. In the cell membranes, PTX-catalyzed ADP-ribosylation of a 40-kDa protein was significantly attenuated by pretreatment of PGD2. Time course of the attenuation of PTX-catalyzed ADP-ribosylation by PGD2 was apparently different from that by PGE2 or PGF2 alpha. These results indicate that PGD2 activates PTX-sensitive GTP-binding protein independently from PGE2 or PGF2 alpha and stimulates PI hydrolysis resulting in proliferation of osteoblast-like cells.
    [Abstract] [Full Text] [Related] [New Search]