These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Linkage of the acetylcholine transporter-vesamicol receptor to proteoglycan in synaptic vesicles. Author: Bahr BA, Noremberg K, Rogers GA, Hicks BW, Parsons SM. Journal: Biochemistry; 1992 Jun 30; 31(25):5778-84. PubMed ID: 1319202. Abstract: The relationship of the acetylcholine transporter-vesamicol receptor (AcChT-VR) to proteoglycan in Torpedo electric organ synaptic vesicles was investigated. The cholate-solubilized VR was immunoprecipitated by a monoclonal antibody directed against the SV1 epitope located in the glycosaminoglycan portion of the proteoglycan. AcChT that was photoaffinity-labeled with a tritiated high-affinity analogue of AcCh [cyclohexylmethyl cis-N-(4-azidophenacyl)-N-methylisonipecotate] and then denatured in sodium dodecyl sulfate also immunoprecipitated. The labeled AcChT exhibited a M(r) range of 100,000-200,000. Proteoglycan did not engage in detectable nonspecific reversible aggregation that might mask the presence of another subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vesicles permeabilized with cholate, the enzymes keratanase and testicular hyaluronidase inactivated binding of vesamicol and destroyed the SV1 epitope without detectable proteolysis. Other glycosaminoglycan-degrading enzymes were without effect. The results demonstrate that the AcChT-VR and proteoglycan are very strongly linked and that glycosaminoglycan-like polysaccharide controls the conformation of the VR. The unexpected linkage to proteoglycan suggests that AcChT-VR in intact terminals might communicate with extracellular matrix and participate in stabilization and operation of the synapse.[Abstract] [Full Text] [Related] [New Search]