These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Endothelial cells and vascular hemostasis]. Author: Levin EG, Hanano M. Journal: Nihon Rinsho; 1992 Feb; 50(2):303-6. PubMed ID: 1319512. Abstract: Procoagulant, anticoagulant, and fibrinolytic activities are associated with endothelial cells and involve the production, secretion, and receptor mediated binding of proteins involved in these processes. The procoagulant aspect of endothelial cells function involves the production and release of von Willebrand Factor(vWF), the production of tissue factor, and the presence of Factor IX/IXa receptors on the cell surface. Secretion of vWf will promote the initial steps in thrombus formation by supporting platelet-platelet interaction and platelet-subendothelial matrix adhesion. Tissue factor which is undetectable in resting cells appears after exposure to various cytokines and initiates factor VIIa activation of factors IX and X. Receptors of Factor IX/IXa are also present and mediate the assembly of the prothrombinase complex on the endothelial cell surface. The anticoagulant pathway involves the cell surface protein thrombomodulin, protein C and its cofactor protein S. Thrombomodulin binds thrombin which activates protein C which in the presence of protein S cleaves and inactivates Factors V and VIII. Inactivation of these two coagulation cofactors halts the coagulation. Finally, endothelial cells also play a pivotal role in the fibrinolytic system. Production and regulated secretion of tissue plasminogen activator creates a profibrinolytic state in the endothelial cell environment. In addition, receptors for plasminogen and urokinase are also present, constituting a cell surface mediated fibrinolytic pathway. Plasminogen activator inhibitor type I, the primary inhibitor of tPA, is also produced by endothelial cells. Thus endothelial cells can promote and inhibit fibrinolysis, depending on the prevailing environmental conditions.[Abstract] [Full Text] [Related] [New Search]