These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanisms underlying the inhibitory effect of dibutyryl cyclic AMP in vascular smooth muscle.
    Author: Abe A, Karaki H.
    Journal: Eur J Pharmacol; 1992 Feb 18; 211(3):305-11. PubMed ID: 1319910.
    Abstract:
    The mechanism by which dibutyryl cyclic AMP (db-cAMP) induces vasodilatation was examined in isolated rat aorta. The contraction induced by norepinephrine (NE) was more sensitive to the inhibitory effect of db-cAMP than that induced by high K+, and the contraction induced by lower concentrations of each stimulant was more sensitive to db-cAMP than that induced by higher concentrations. Db-cAMP at 10 microM inhibited the increases in muscle tension and cytosolic Ca2+ level ([Ca2+]i) without changing the [Ca2+]i-tension relationship, suggesting that the inhibitory effect is mainly due to a decrease in [Ca2+]i. A higher concentration (300 microM) of db-cAMP inhibited muscle tension more strongly than [Ca2+]i suggesting that db-cAMP decreases Ca2+ sensitivity of contractile elements. In contrast, 10 microM verapamil inhibited the NE-stimulated [Ca2+]i more strongly than the NE-induced contraction. The verapamil-insensitive portion of the NE-stimulated [Ca2+]i and contraction was inhibited by db-cAMP, suggesting that db-cAMP and verapamil act by different mechanisms. In Ca(2+)-free solution, 1 microM NE induced transient increases in muscle tension and [Ca2+]i. The transient contraction was inhibited by 1 mM db-cAMP more strongly than [Ca2+]i. An activator of adenylate cyclase, forskolin, showed inhibitory effects similar to those of db-cAMP. The inhibitory effects of db-cAMP and forskolin were inversely proportional to [Ca2+]i before the addition of these inhibitors. These results suggest that db-cAMP inhibits smooth muscle contraction by decreasing [Ca2+]i and the Ca2+ sensitivity of contractile elements, and that both of these effects are stronger when [Ca2+]i is lower.
    [Abstract] [Full Text] [Related] [New Search]