These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relation between Na-K-ATPase activity and respiratory rate in the rat kidney. Author: Silva P, Torretti J, Hayslett JP, Epstein FH. Journal: Am J Physiol; 1976 May; 230(5):1432-8. PubMed ID: 132122. Abstract: The relation between Na-k-ATPase activity in homogenates of rat kidney and oxygen consumption in kidney slices was studied by employing different physiological maneuvers known to change the activity of renal Na-K-ATPase. Treatment of euthyroid rats with 3,5,3'-triiodo-1-thyronine increased Na-K-ATPase activity, sodium-dependent oxygen consumption (QO2[t]), and para-aminohippurate (PAH) accumulation by kidney slices without changing glomerular filtration rate or net sodium reabsorption by the intact kidney. Treatment with methylprednisolone also increased Na-K-ATPase, QO2[t], and PAH transport. Chronic potassium loading, on the other hand, increased renal Na-K-ATPase to the same degree as the first two procedures, but QO2[t] and PAH accumulation were unchanged. Partial nephrectomy induced an increase in the activity of Na-K-ATPase in homogenates of the remaining kidney fragment, but QO2[t] did not change significantly and PAH uptake was unaltered. An increase in the activity of Na-K-ATPase in kidney homogenates is therefore not necessarily associated with a parallel change in oxygen consumption by the intact cell.[Abstract] [Full Text] [Related] [New Search]