These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibitors of protein phosphatase type 1 and 2A attenuate phosphatidylinositol metabolism and Ca(2+)-transients in human platelets. Role of a cdc2-related protein kinase.
    Author: Lerea KM.
    Journal: Biochemistry; 1992 Jul 21; 31(28):6553-61. PubMed ID: 1321663.
    Abstract:
    The addition of either okadaic acid or calyculin A desensitizes human platelets to thrombin. One objective of this study was to determine which step(s) leading to secretion reactions may be affected by these protein phosphatase inhibitors. In a dose-dependent manner, okadaic acid or calyculin A inhibits phosphatidylinositol metabolism and Ca(2+)-transients. In all cases, calyculin A was approximately 10-fold more potent than okadaic acid, and it had maximal effects at a concentration of 1 microM. Although thrombin-induced rises in [Ca2+]i were diminished, an increase in the phosphorylation state of myosin light chains (MLC) was still observed. Changes in this phosphorylation were diminished, however, following the addition of thrombin to calyculin A-treated platelets that were loaded with dimethyl-BAPTA. These data demonstrate that calyculin A and okadaic acid lower agonist-induced Ca(2+)-transients, which in turn prevents responses such as secretion reactions. Calyculin A/okadaic acid-induced phosphorylation events were not diminished in BAPTA-loaded platelets, suggesting that these phosphorylations are Ca(2+)-insensitive. Thus, a second objective of this study was to identify the protein kinase(s) that was(were) responsible for the calyculin A-induced phosphorylations. In a platelet lysate system, calyculin A caused an increase in the incorporation of [32P]phosphate into p50. This phosphorylation event was identical to that observed in the intact platelet and was not mimicked by cAMP, cGMP, Ca2+, or a Ca2+/phospholipid/diacylglycerol mixture. Kinase activity was removed after the lysate was incubated with p13suc1-Sepharose. This suggests that a p13suc1-sensitive protein kinase, e.g., a cell cycle-dependent protein kinase, is responsible for the calyculin A-sensitive phosphorylation events.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]