These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ig mu-epsilon isotype switch in IL-4-treated human B lymphoblastoid cells. Evidence for a sequential switch. Author: Mills FC, Thyphronitis G, Finkelman FD, Max EE. Journal: J Immunol; 1992 Aug 01; 149(3):1075-85. PubMed ID: 1321850. Abstract: IgE is produced by B lymphocytes that have undergone a deletional rearrangement of their Ig H chain gene locus, a rearrangement that joins the switch region of the mu gene, S mu, with the corresponding region of the epsilon gene, S epsilon. To examine the resulting composite S mu-S epsilon junctions of human lymphoid cells, we have used a polymerase chain reaction strategy to clone the switch regions of the human myeloma U266 and of two IgE-producing human cell lines generated by treatment of lymphocytes with EBV plus IL-4. The switch junction of one of the EBV lines is a complex rearrangement in which a fragment of S gamma is interposed between S mu and S epsilon. This finding suggested that the switch to epsilon in this human lymphoid cell was preceded by a S mu-S gamma recombination. To determine whether this sequential switch rearrangement represented a unique event or occurred with some regularity in human B cells switching to IgE production, DNA samples from bulk cultures of lymphocytes treated with IL-4 were subjected to polymerase chain reaction amplification of their S mu-S epsilon junctions. When the resulting fragments were examined by Southern blotting, a substantial fraction hybridized to an S gamma probe. This finding suggests that sequential recombination involving S gamma is not rare in the switch to epsilon production in humans. Our polymerase chain reaction strategy should be useful in studying isotype switching at the DNA level.[Abstract] [Full Text] [Related] [New Search]