These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regional variations in particulate cyclic AMP dependent-protein kinase binding activity in the gerbil hippocampus following transient forebrain ischemia by [3H]cyclic AMP binding.
    Author: Hara H, Kato H, Onodera H, Kawagoe J, Kogure K.
    Journal: Brain Res; 1992 Mar 06; 574(1-2):26-32. PubMed ID: 1322221.
    Abstract:
    Changes in the binding of [3H]cyclic AMP as an indicator of particulate cyclic AMP-dependent protein kinase (AMP-DPK) binding activity following transient forebrain ischemia were studied in the gerbil using in vitro autoradiography. [3H]Cyclic AMP binding in the strata pyramidale and lacunosum-moleculare of the hippocampal CA1, the stratum pyramidale of the CA3, and the dentate gyrus decreased transiently in the early postischemic phase but then recovered. However, [3H]cyclic AMP binding in the strata pyramidale and radiatum of the CA1, the granular layer of the dentate gyrus, and the upper layer of the cortex decreased again 7 days after ischemia. In the CA4 subfield and the lower layer of the cortex, the binding showed no significant alterations after ischemia. Administration of pentobarbital prior to the induction of ischemia prevented the decrease in [3H]cyclic AMP binding in the CA1 subfield 6 h and 7 days after ischemia, and showed protective effects against neuronal death of the CA1 pyramidal cells 7 days after ischemia. These results indicate that marked alteration of intracellular signal transduction precedes neuronal damage in the hippocampal CA1 subfield. Furthermore, postischemic reduction of [3H]cyclic AMP binding in the histologically intact cerebral cortex, CA3, and dentate gyrus may be the reflection of cellular dysfunction after energy failure.
    [Abstract] [Full Text] [Related] [New Search]