These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mapping of second messenger and rolipram receptors in mammalian brain.
    Author: Araki T, Kato H, Kogure K.
    Journal: Brain Res Bull; 1992 Jun; 28(6):843-8. PubMed ID: 1322228.
    Abstract:
    Autoradiographic localizations of major second messengers and a selective cyclic adenosine monophosphate (cyclic-AMP) phosphodiesterase in the brain were visualized in the gerbil and the rat using receptor autoradiography. [3H]Phorbol 12,13-dibutyrate (PDBu), [3H]inositol 1,4,5-trisphosphate (IP3), [3H]forskolin, [3H]cyclic-AMP, and [3H]rolipram were used to label protein kinase C, IP3 receptor, adenylate cyclase, cyclic-AMP-dependent protein kinase (cyclic-AMP-DPK), and Ca2+/calmodulin-independent cyclic-AMP phosphodiesterase (PDE), respectively. Most second messengers and rolipram binding activities were especially found in the limbic system, basal ganglia, and cerebellum. Marked differences were noted in the hippocampus, where cyclic-AMP and rolipram binding activities were very low in gerbils but high in rats. In contrast, regional localization in the binding sites of PDBu, IP3, and forskolin in gerbil brain was relatively similar to that in rat brain. Further, alteration of the cyclic-AMP and rolipram binding sites was studied in the gerbil hippocampus 7 days after 10-min cerebral ischemia. The results suggest that the gerbil differs from the rat with respect to the characteristic neurons or interneurons, especially in the hippocampal formation. This finding may help further elucidate the relationship or difference between gerbils and rats for brain function and behavioral pharmacology. Furthermore, our results suggest that cyclic-AMP and rolipram binding sites are predominantly distributed on the pyramidal cell layer of the hippocampal CA1 sector and that transient cerebral ischemia can cause marked reduction in these binding sites in the hippocampus.
    [Abstract] [Full Text] [Related] [New Search]