These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antimicrobial activity of DU-6859, a new potent fluoroquinolone, against clinical isolates. Author: Sato K, Hoshino K, Tanaka M, Hayakawa I, Osada Y. Journal: Antimicrob Agents Chemother; 1992 Jul; 36(7):1491-8. PubMed ID: 1324647. Abstract: DU-6859, (-)-7-[(7S)-amino-5-azaspiro(2,4)heptan-5-yl]-8-chloro-6- fluoro-1-[(1R,2R)-cis-2-fluoro-1-cyclopropyl]-1,4-dihydro-4-oxoquinol one-3- carboxylic acid, is a new fluoroquinolone with antibacterial activity which is significantly better than those of currently available quinolones. The MICs for 90% of methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis clinical isolates (MIC90s) were 0.1, 3.13, 0.1, and 0.39 microgram/ml, respectively. MIC50s of DU-6859 against quinolone-resistant, methicillin-resistant S. aureus were 8-, 32-, 64-, and 128-fold lower than those of tosufloxacin and sparfloxacin, ofloxacin and fleroxacin, ciprofloxacin, and lomefloxacin, respectively. DU-6859 inhibited the growth of all strains of Streptococcus pneumoniae and Streptococcus pyogenes at 0.1 and 0.2 microgram/ml, respectively, and was more active against enterococci than the other quinolones tested. Although the activity of DU-6859 against Pseudomonas aeruginosa was roughly comparable to that of ciprofloxacin at the MIC50 level, it was fourfold more active than ciprofloxacin at the MIC90 level. DU-6859 was also more active against other glucose-nonfermenting bacteria, Haemophilus influenzae, Moraxella catarrhalis, and Neisseria gonorrhoeae, than the other drugs tested. Strains of Bacteroides fragilis and Peptostreptococcus spp. were susceptible to DU-6859; MIC90s were 0.39 and 0.2 microgram/ml, respectively. DU-6859 generally showed activities twofold or greater than those of ciprofloxacin and the other drugs against almost all members of the family Enterobacteriaceae. The action of DU-6859 against the clinical isolates was bactericidal at concentrations near the MICs. DU-6859 activity was not affected by different media, pH, inoculum size, or human serum but was decreased in human urine.[Abstract] [Full Text] [Related] [New Search]