These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A His-Leu-Leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function. Author: Johnson KF, Kornfeld S. Journal: J Biol Chem; 1992 Aug 25; 267(24):17110-5. PubMed ID: 1324923. Abstract: The determinants on the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) required for lysosomal enzyme sorting have been analyzed. Mouse L cells deficient in the mannose 6-phosphate/insulin-like growth factor-II receptor were transfected with normal bovine CD-MPR cDNA or cDNAs containing mutations in the 67-amino acid cytoplasmic tail and assayed for their ability to target the lysosomal enzyme cathepsin D to lysosomes. Cells expressing the wild-type bovine CD-MPR sorted 67 +/- 2% of newly synthesized cathepsin D compared with the base-line value of 47 +/- 1%. The presence of mannose 6-phosphate in the medium did not affect the efficiency of cathepsin D sorting, indicating that the routing of the ligand-receptor complex is completely intracellular. Mutant receptors with the carboxyl-terminal His-Leu-Leu-Pro-Met67 residues deleted or replaced with alanines sorted cathepsin D below the base-line value. A mutant receptor with the outermost Pro-Met residues replaced with alanines sorted cathepsin D better than the wild-type receptor, indicating that the essential residues for sorting are the His-Leu-Leu sequence. Disruption of a putative casein kinase II phosphorylation site at Ser57 had no detectable effect on sorting. The mutant receptor with the five-amino acid deletion was able to bind to a phosphopentamannose affinity column, proving that its ligand binding site was grossly intact. Resialylation experiments showed that this mutant receptor recycled from the cell surface to the Golgi at a rate similar to the normal CD-MPR, indicating that the defect in sorting is at the level of the Golgi.[Abstract] [Full Text] [Related] [New Search]