These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium ionophores increase intracellular pH in chicken granulosa cells.
    Author: Asem EK, Li M, Tsang BK.
    Journal: J Mol Endocrinol; 1992 Aug; 9(1):1-6. PubMed ID: 1325150.
    Abstract:
    Several hormone agonists exert their physiological actions by triggering an inositol phospholipid-Ca2+ signalling cascade and cytosolic alkalinization. Although calcium ionophores have been used extensively to probe the role of Ca2+ in the regulation of steroidogenesis in granulosa cells, the precise relationship between changes in intracellular Ca2+ (Ca2+i) and pH (pHi) is unclear. In the present study we have used a fluorescent pH indicator, 2'7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein, to examine the influence of two Ca2+ ionophores, ionomycin and 4-Bromo-A23187 (4-Br-A23187), on pHi in chicken granulosa cells. Chicken granulosa cells from the largest preovulatory follicle were incubated with Ca2+ ionophores (0-2 microM) and/or inhibitors of Na+/H+ antiport (amiloride, dimethylamiloride and ethylisopropyl amiloride; 0.5, 5 and 50 microM respectively) in the presence of Na+ (or choline+; 0-144 mM) and/or Ca2+ (0-10 mM). Ionomycin or 4-Br-A23187 elicited a rapid and sustained cytosolic alkalinization. The magnitude of increase in pHi was dependent on the concentration of the Ca2+ ionophore and the presence of extracellular Ca2+ but independent of extracellular Na+. Pretreatment of the cells with amiloride or its analogues failed to affect the increase in pHi induced by the Ca2+ ionophores significantly. These findings demonstrate that, in addition to their widely reported effects on Ca2+i redistribution in granulosa cells, 4-Br-A23187 and ionomycin cause Ca(2+)-dependent cytosolic alkalinization. This action of the Ca2+ ionophores is independent of the Na+/H+ antiport. Caution must be exercised in using Ca2+ ionophores as probes to define the role of Ca2+ in the regulation of granulosa cell function.
    [Abstract] [Full Text] [Related] [New Search]