These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of the Na-K pump by intracellular Na in rat slow- and fast-twitch muscle. Author: Everts ME, Clausen T. Journal: Acta Physiol Scand; 1992 Aug; 145(4):353-62. PubMed ID: 1326854. Abstract: Experiments were performed on isolated rat soleus (slow-twitch) and extensor digitorum longus (EDL) (fast-twitch) muscle of 4-week-old rats. In soleus muscle, electrical simulation at 2 Hz for 5 min increased the ouabain-suppressible 86Rb+ uptake by 138%, without significant changes in intracellular Na+ content or Na+/K+ ratio. In EDL muscle, the ouabain-suppressible 86Rb+ uptake was stimulated by only 58%, whereas intracellular Na+ content and Na+/K+ ratio were increased by around 70%. Na(+)-loading of the muscles by exposure to K(+)-free or K(+)-Ca(2-)-Mg(2+)-free buffer stimulated the ouabain-suppressible 86Rb+ uptake in the two muscles to roughly the same extent, but in EDL muscle this was associated with a more than twofold larger increase in Na+/K+ ratio. When the Na+ influx was increased by exposure to veratridine similar results were obtained. Graded variation in intracellular Na+ content was achieved by exposure to monensin. In soleus muscle, a 25% increase in intracellular Na+/K+ ratio resulted in a doubling of the ouabain-suppressible 86Rb+ uptake, whereas a doubling of the Na(+)-K+ transport rate in EDL muscle required a 140% increase in Na+/K+ ratio. The results indicate that in soleus muscle the Na+/K+ pump is much more sensitive to changes in intracellular Na+ content than in EDL muscle. This might explain the larger activation of the Na(+)-K+ pump in slow-twitch muscle during electrical stimulation and might be of significance for the activation of the Na(+)-K+ pump in vivo during work.[Abstract] [Full Text] [Related] [New Search]