These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Folding topology of the disulfide-bonded dimeric DNA-binding domain of the myogenic determination factor MyoD.
    Author: Starovasnik MA, Blackwell TK, Laue TM, Weintraub H, Klevit RE.
    Journal: Biochemistry; 1992 Oct 20; 31(41):9891-903. PubMed ID: 1327135.
    Abstract:
    The myogenic determination factor MyoD is a member of the basic-helix-loop-helix (bHLH) protein family. A 68-residue fragment of MyoD encompassing the entire bHLH region (MyoD-bHLH) is sufficient for protein dimerization, sequence-specific DNA binding in vitro, and conversion of fibroblasts into muscle cells. The circular dichroism spectrum of MyoD-bHLH indicates the presence of significant alpha-helical secondary structure; however, the NMR spectrum lacks features of a well-defined tertiary structure. There is a naturally occurring cysteine at residue 135 in mouse MyoD that when oxidized to a disulfide induces MyoD-bHLH to form a symmetric homodimer with a defined tertiary structure as judged by sedimentation equilibrium ultracentrifugation and NMR spectroscopy. Oxidized MyoD-bHLH retains sequence-specific DNA-binding activity, albeit with an apparent 100-1000-fold decrease in affinity. Here, we report the structural characterization of the oxidized MyoD-bHLH homodimer by NMR spectroscopy. Our findings indicate that the basic region is unstructured and flexible, while the HLH region consists of two alpha-helices of unequal length connected by an as yet undetermined loop structure. Qualitative examination of interhelical NOEs suggests several potential arrangements for the two helix 1/helix 2 pairs in the symmetric oxidized dimer. These arrangements were evaluated for whether they could incorporate the disulfide bond, satisfy loop length constraints, and juxtapose the two basic regions. Only a model that aligns helix 1 parallel to helix 1' and antiparallel to helix 2 was consistent with all constraints. Thus, an antiparallel four-helix bundle topology is proposed for the symmetric dimer. This topology is hypothesized to serve as a general model for other bHLH protein domains.
    [Abstract] [Full Text] [Related] [New Search]